共有結合有機フレームワークを通じた効率的なエネルギー輸送の発見 (Efficient Energy Transport Through Covalent Organic Frameworks)

ad

2025-01-08 ミュンヘン大学 (LMU)

LMUミュンヘン、ミュンヘン工科大学(TUM)、オックスフォード大学の研究チームは、共価有機構造体(COF)における励起状態の拡散を新たな分光技術で調査し、エネルギーが数百ナノメートルの距離を効率的に移動することを発見しました。この成果は、持続可能な有機材料の開発や、光触媒、オプトエレクトロニクス、太陽光発電などへの応用に新たな展望を開くものです。

<関連情報>

2次元共有結合有機骨格薄膜における高速励起状態拡散の時空間分光法 Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films

Laura Spies,Alexander Biewald,Laura Fuchs,Konrad Merkel,Marcello Righetto,Zehua Xu,Roman Guntermann,Rik Hooijer,Laura M. Herz,Frank Ortmann,Jenny Schneider,Thomas Bein,and Achim Hartschuh
Journal of the American Chemical Society  Published: January 2, 2025
DOI:https://doi.org/10.1021/jacs.4c13129

Abstract

共有結合有機フレームワークを通じた効率的なエネルギー輸送の発見 (Efficient Energy Transport Through Covalent Organic Frameworks)

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion. Herein, we investigated the charge carrier diffusion in a two-dimensional COF thin film generated through condensation of the building blocks benzodithiophene-dialdehyde (BDT) and N,N,N′,N′-tetra(4-aminophenyl)benzene-1,4-diamine (W). We visualized the spatiotemporal evolution of photogenerated excited states in the 2D WBDT COF thin film using remote-detected time-resolved PL measurements (RDTR PL). Combined with optical pump terahertz probe (OPTP) studies, we identified two diffusive species dominating the process at different time scales. Initially, short-lived free charge carriers diffuse almost temperature-independently before relaxing into bound states at a rate of 0.7 ps–1. Supported by theoretical simulations, these long-lived bound states were identified as excitons. We directly accessed the lateral exciton diffusion within the oriented and crystalline film, revealing remarkably high diffusion coefficients of up to 4 cm2 s–1 (200 K) and diffusion lengths of several hundreds of nanometers and across grain boundaries. Temperature-dependent exciton transport analysis showed contributions from both incoherent hopping and coherent band-like transport. In the transport model developed based on these findings, we discuss the complex impact of order and disorder on charge carrier diffusion within the WBDT COF thin film.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました