麻農園における相互受粉の脆弱性を物理学に基づくモデリングで特定(Physics-based modeling identifies cross-pollination vulnerabilities for hemp farms)

ad

2024-12-02 バージニア工科大学(VirginiaTech)

バージニア工科大学の研究者たちは、ドローンを活用してヘンプ(産業用大麻)の花粉飛散を追跡する手法を開発しました。この技術により、花粉の移動経路や拡散範囲を詳細に把握することが可能となり、異なるヘンプ品種間の交雑リスクを評価する際に重要な情報を提供します。特に、THC含有量が低い産業用ヘンプと高いマリファナ品種との交雑を防ぐための管理策の策定に役立つと期待されています。この研究は、ヘンプ栽培の効率化と品質管理の向上に貢献するものです。

<関連情報>

アメリカ全土における大麻花粉の飛散状況 Cannabis pollen dispersal across the United States

Manu Nimmala,Shane D. Ross & Hosein Foroutan

Scientific  Reports  Published:04 September 2024

DOI:https://doi.org/10.1038/s41598-024-70633-x

麻農園における相互受粉の脆弱性を物理学に基づくモデリングで特定(Physics-based modeling identifies cross-pollination vulnerabilities for hemp farms)

Abstract

For the recently legalized US hemp industry (Cannabis sativa), cross-pollination between neighboring fields has become a significant challenge, leading to contaminated seeds, reduced oil yields, and in some cases, mandated crop destruction. As a step towards assessing hemp cross-pollination risk, this study characterizes the seasonal and spatial patterns in windborne hemp pollen dispersal spanning the conterminous United States (CONUS). By leveraging meteorological data obtained through mesoscale model simulations, we have driven Lagrangian Stochastic models to simulate wind-borne hemp pollen dispersion across CONUS on a county-by-county basis for five months from July to November, encompassing the potential flowering season for industrial hemp. Our findings reveal that pollen deposition rates escalate from summer to autumn due to the reduction in convective activity during daytime and the increase in wind shear at night as the season progresses. We find diurnal variations in pollen dispersion: nighttime conditions favor deposition in proximity to the source, while daytime conditions facilitate broader dispersal albeit with reduced deposition rates. These shifting weather patterns give rise to specific regions of CONUS more vulnerable to hemp cross-pollination.

1204農業及び蚕糸
ad
ad
Follow
ad
タイトルとURLをコピーしました