無溶剤の新しい3Dプリンティング材料で生分解性インプラントが可能になるかもしれない(New Solvent Free 3D Printing Material Could Enable Biodegradable Implants)

ad

2024-10-28 デューク大学(Duke)

デューク大学の研究者が開発した新しい溶剤不要のポリマーは、商用3Dプリンターで使用可能で、生体内で分解する医療用インプラントの製造に役立つ。従来のDLP 3Dプリンティングでは溶剤が必要で、収縮や強度低下の問題があったが、このポリマーは溶剤を使用せずに高い機械的特性を維持し、収縮も防ぐ。医療インプラントとしての応用が期待され、デューク大学は特許を申請中。

<関連情報>

分解性ポリ(アリルグリシジルエーテルサクシネート)の合成と無溶剤DLP 3Dプリンティング Synthesis and Solvent Free DLP 3D Printing of Degradable Poly(Allyl Glycidyl Ether Succinate)

Maddison I. Segal, Alexander J. Bahnick, Nicola G. Judge, Matthew L. Becker
Angewandte Chemie International Edition  Published: 30 August 2024
DOI:https://doi.org/10.1002/anie.202414016

Graphical Abstract

We report the synthesis of poly(allyl glycidyl ether succinate) (PAGES), a low viscosity, degradable polyester by ring opening copolymerization and its use in combination with degradable thiol crosslinkers to afford a solvent free resin yielding 3D printed parts with minimal shrinkage and residual stress.

無溶剤の新しい3Dプリンティング材料で生分解性インプラントが可能になるかもしれない(New Solvent Free 3D Printing Material Could Enable Biodegradable Implants)

Abstract

Digital light processing (DLP) printing forms solid constructs from fluidic resins by photochemically crosslinking polymeric resins with reactive functional groups. DLP is used widely due to its efficient, high-resolution printing, but its use and translational potential has been limited in some applications as state-of-the-art resins experience unpredictable and anisotropic part shrinkage due to the use of solvent needed to reduce resin viscosity and layer dependent crosslinking. Herein, poly(allyl glycidyl ether succinate) (PAGES), a low viscosity, degradable polyester, was synthesized by ring opening copolymerization and used in combination with degradable thiol crosslinkers to afford a solvent free resin that can be utilized in DLP printing. Varying resin formulations of PAGES polymer are shown to decrease part shrinkage from 14 % to 0.3 %. Photochemically printed parts fabricated from PAGES possess tensile moduli between 0.43 and 6.18 MPa and degradation profiles are shown to vary between 12 and 40 days under accelerated conditions based on degree of polymerization and crosslink ratio.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました