新しいフィンガープリント質量分析法がプロテオーム解明に道を開く(New Fingerprint Mass Spectrometry Method Paves the Way to Solving the Proteome)

ad

2024-10-22 カリフォルニア工科大学(Caltech)

カルテックの研究者は、機械学習を活用した新しい手法で、ナノスケールデバイスを用いて個々の分子や粒子の質量を正確に測定する方法を開発しました。この「指紋ナノ電気機械質量分析法」により、プロテオーム(生物内の全てのタンパク質)の解析が進む可能性があります。この技術は、タンパク質を破壊せずに質量を測定し、高速で多数のタンパク質を分析できるため、将来的に疾患研究や治療への応用が期待されています。

<関連情報>

データ駆動型フィンガープリント・ナノ電気機械質量分析法(Data-driven fingerprint nanoelectromechanical mass spectrometry)

John E. Sader,Alfredo Gomez,Adam P. Neumann,Alex Nunn & Michael L. Roukes
Nature Communications  Published:22 October 2024
DOI:https://doi.org/10.1038/s41467-024-51733-8

新しいフィンガープリント質量分析法がプロテオーム解明に道を開く(New Fingerprint Mass Spectrometry Method Paves the Way to Solving the Proteome)

Abstract

Fingerprint analysis is a ubiquitous tool for pattern recognition with applications spanning from geolocation and DNA analysis to facial recognition and forensic identification. Central to its utility is the ability to provide accurate identification without an a priori mathematical model for the pattern. We report a data-driven fingerprint approach for nanoelectromechanical systems mass spectrometry that enables mass measurements of particles and molecules using complex, uncharacterized nanoelectromechanical devices of arbitrary specification. Nanoelectromechanical systems mass spectrometry is based on the frequency shifts of the nanoelectromechanical device vibrational modes that are induced by analyte adsorption. The sequence of frequency shifts constitutes a fingerprint of this adsorption, which is directly amenable to pattern matching. Two current requirements of nanoelectromechanical-based mass spectrometry are: (1) a priori knowledge or measurement of the device mode-shapes, and (2) a mode-shape-based model that connects the induced modal frequency shifts to mass adsorption. This may not be possible for advanced nanoelectromechanical devices with three-dimensional mode-shapes and nanometer-sized features. The advance reported here eliminates this impediment, thereby allowing device designs of arbitrary specification and size to be employed. This enables the use of advanced nanoelectromechanical devices with complex vibrational modes, which offer unprecedented prospects for attaining the ultimate detection limits of nanoelectromechanical mass spectrometry.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました