研究者ら、将来のセンシング・デバイスを進歩させる可能性のある量子の利点を明らかにする(Researchers reveal quantum advantage that could advance future sensing devices)

ad

2024-10-16 オークリッジ国立研究所(ORNL)

オークリッジ国立研究所(ORNL)とオクラホマ大学の研究者は、量子状態の光を活用して、複数のセンサーを同時に検出できる「並列量子強化センサー」を実現しました。これにより、材料解析やイメージング、医療分野での応用が期待されます。この技術は、従来の光に比べてノイズが少ない「スクイーズド光」を使用し、全てのセンサーで22〜24%の感度向上を達成。ダークマターの検出や多様な病原体の同時検出に貢献するとされています。

<関連情報>

パラレル量子センシング Parallel Quantum-Enhanced Sensing

Mohammadjavad Dowran,Aye L. Win,Umang Jain,Ashok Kumar,Benjamin J. Lawrie,Raphael C. Pooser,Alberto M. Marino
ACS Photonics  Published: July 22, 2024
DOI:https://doi.org/10.1021/acsphotonics.4c00256

Abstract

 

研究者ら、将来のセンシング・デバイスを進歩させる可能性のある量子の利点を明らかにする(Researchers reveal quantum advantage that could advance future sensing devices)

Quantum metrology takes advantage of quantum correlations to enhance the sensitivity of sensors and measurement techniques beyond their fundamental classical limit, given by the shot-noise limit. The use of both temporal and spatial correlations present in quantum states of light can extend quantum-enhanced sensing to a parallel configuration that can simultaneously probe an array of sensors or independently measure multiple parameters. To this end, we use multispatial-mode bright twin beams of light, which are characterized by independent quantum-correlated spatial subregions in addition to quantum temporal correlations, to probe a four-sensor quadrant plasmonic array. We show that it is possible to independently and simultaneously measure local changes in refractive index for all four sensors with a quantum enhancement in sensitivity in the range of 22% to 24% over the corresponding classical configuration. These results provide a first step toward highly parallel spatially resolved quantum-enhanced sensing techniques and pave the way toward more complex quantum sensing and quantum imaging platforms.

量子増強プラズモニック・センシング Quantum-enhanced plasmonic sensing

Mohammadjavad Dowran, Ashok Kumar, Benjamin J. Lawrie, Raphael C. Pooser, and Alberto M. Marino
Optica  Published: May 16, 2018
DOI:https://doi.org/10.1364/OPTICA.5.000628

Abstract

Quantum resources can enhance the sensitivity of a device beyond the classical shot noise limit and, as a result, revolutionize the field of metrology through the development of quantum-enhanced sensors. In particular, plasmonic sensors, which are widely used in biological and chemical sensing applications, offer a unique opportunity to bring such an enhancement to real-life devices. Here, we use bright entangled twin beams to enhance the sensitivity of a plasmonic sensor used to measure local changes in the refractive index. We demonstrate a 56% quantum enhancement in the sensitivity of a state-of-the-art plasmonic sensor when compared with the corresponding classical configuration and a 24% quantum enhancement when compared to an optimal single-beam classical configuration. We measure sensitivities on the order of 10−10 RIU/√Hz, nearly 5 orders of magnitude better than previous proof-of-principle implementations of quantum-enhanced plasmonic sensors. These results promise significant enhancements in ultratrace label-free plasmonic sensing and will find their way into areas ranging from biomedical applications to chemical detection.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました