粒子付着による結晶化を制御する力の理解(Understanding the Forces that Regulate Crystallization by Particle Attachment)

ad

2024-07-23 パシフィック・ノースウェスト国立研究所(PNNL)

ナノ結晶の挙動はエネルギーと動力学の複雑な相互作用によって決まりますが、DLVO理論だけでは説明できません。研究者たちは、亜鉛酸化物(ZnO)のモデルシステムを用いて、DLVO理論に含まれない双極子間相互作用が配向付着(OA)の主な駆動力であることを発見しました。この力は、低極性溶液での付着を促進し、短距離反発力は溶媒の性質に依存します。この研究は、ナノ材料の特定の構造を生成するための新たな洞察を提供し、従来のコロイド理論を超えて材料合成の理解と予測を進めるものです。

<関連情報>

酸化亜鉛ナノ粒子の非DLVO力と配向付着に及ぼす溶媒組成の影響 Effect of Solvent Composition on Non-DLVO Forces and Oriented Attachment of Zinc Oxide Nanoparticles

Lili Liu,Sakshi Yadav Schmid,Zhaojie Feng,Dongsheng Li,Timothy C. Droubay,Peter J. Pauzauskie,Gregory K. Schenter,James J. De Yoreo,Jaehun Chun,Elias Nakouzi
ACS Nano  Published: June 18, 2024
DOI:https://doi.org/10.1021/acsnano.4c01797

Abstract

 

粒子付着による結晶化を制御する力の理解(Understanding the Forces that Regulate Crystallization by Particle Attachment)

Oriented attachment (OA) occurs when nanoparticles in solution align their crystallographic axes prior to colliding and subsequently fuse into single crystals. Traditional colloidal theories such as DLVO provide a framework for evaluating OA but fail to capture key particle interactions due to the atomistic details of both the crystal structure and the interfacial solution structure. Using zinc oxide as a model system, we investigated the effect of the solvent on short-ranged and long-ranged particle interactions and the resulting OA mechanism. In situ TEM imaging showed that ZnO nanocrystals in toluene undergo long-range attraction comparable to 1kT at separations of 10 nm and 3kT near particle contact. These observations were rationalized by considering non-DLVO interactions, namely, dipole–dipole forces and torques between the polar ZnO nanocrystals. Langevin dynamics simulations showed stronger interactions in toluene compared to methanol solvents, consistent with the experimental results. Concurrently, we performed atomic force microscopy measurements using ZnO-coated probes for the short-ranged interaction. Our data are relevant to another type of non-DLVO interaction, namely, the repulsive solvation force. Specifically, the solvation force was stronger in water compared to ethanol and methanol, due to the stronger hydrogen bonding and denser packing of water molecules at the interface. Our results highlight the importance of non-DLVO forces in a general framework for understanding and predicting particle aggregation and attachment.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました