研究室から日光の下へ: 屋外用ペロブスカイト太陽電池の耐久性を調べる研究(Escaping the Lab Into the Sunlight: Research Examines Durability of Outdoor Perovskite Solar Cells)

ad

2024-07-01 米国国立再生可能エネルギー研究所(NREL)

A person placing a PACT minimodule in place.
Silverman installs a PACT minimodule at the Outdoor Test Facility at NREL. Photo by Werner Slocum, NREL

ペロブスカイト太陽電池(PSC)は、高性能で低コストの次世代ソーラー電池ですが、普及には安定性と耐久性の課題があります。米国エネルギー省(DOE)による新しい研究は、PSCの劣化メカニズムを屋外での未フィルター日光下と比較して調査しました。この研究では、特別なハイブリッドポリマー材料を用いることで、PSCのUV耐性と効率が向上することが確認されました。研究はノースカロライナ大学チャペルヒル校が主導し、独立検証はDOEのPACTセンターが行いました。屋外での29週間のテストで、16%以上の効率を維持したことが実証されました。この発見は、PSCの商業化に向けた重要な一歩となり、PACTセンターの提供するテストプロトコルが業界の発展に寄与することが期待されています。

<関連情報>

強い結合力を持つ正孔輸送層がペロブスカイト太陽電池の紫外線劣化を軽減 Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells

CHENGBIN FEI, ANASTASIA KUVAYSKAYA, XIAOQIANG SHI, MENGRU WANG, […], AND JINSONG HUANG
Science  Published:6 Jun 2024
DOI:https://doi.org/10.1126/science.adi4531

Editor’s summary

Perovskite solar cells are often tested indoors under conditions that do not represent outdoor use. Fei et al. found that faster degradation of the cells in outdoor testing stems from higher ultraviolet levels that cause debonding at the indium-tin oxide and hybrid hole-transporter layer interfaces. The authors designed a hole-transfer material with a phosphonic acid group bonding to indium-tin oxide and a nitrogen atom in the aromatic carbazole group bonded with lead in the perovskite. A champion perovskite minimodule retained a power conversion efficiency of more than 16% after 29 weeks of outdoor testing. —Phil Szuromi

Abstract

The light-emitting diodes (LEDs) used in indoor testing of perovskite solar cells do not expose them to the levels of ultraviolet (UV) radiation that they would receive in actual outdoor use. We report degradation mechanisms of p-i-n–structured perovskite solar cells under unfiltered sunlight and with LEDs. Weak chemical bonding between perovskites and polymer hole-transporting materials (HTMs) and transparent conducting oxides (TCOs) dominate the accelerated A-site cation migration, rather than direct degradation of HTMs. An aromatic phosphonic acid, [2-(9-ethyl-9H-carbazol-3-yl)ethyl]phosphonic acid (EtCz3EPA), enhanced bonding at the perovskite/HTM/TCO region with a phosphonic acid group bonded to TCOs and a nitrogen group interacting with lead in perovskites. A hybrid HTM of EtCz3EPA with strong hole-extraction polymers retained high efficiency and improved the UV stability of perovskite devices, and a champion perovskite minimodule—independently measured by the Perovskite PV Accelerator for Commercializing Technologies (PACT) center—retained operational efficiency of >16% after 29 weeks of outdoor testing.

ad
0402電気応用
ad
ad


Follow
ad
タイトルとURLをコピーしました