有望な固体冷却材料の冷却挙動を探る(Scientists probe chilling behavior of promising solid-state cooling material)

ad

2024-07-01 オークリッジ国立研究所(ORNL)

エネルギー省のオークリッジ国立研究所が率いる研究チームは、原子スケールでの熱運動の理解を深め、固体冷却技術の向上に貢献しました。この技術は環境に優しく、従来の冷媒液体やガス、可動部品を使わずに食品、車両、電子機器などを効率的に冷却します。研究チームは、ニッケル-コバルト-マンガン-インジウム磁気形状記憶合金を使用し、磁場をかけることで熱を吸収・放出する性質(磁気カロリック効果)を利用して冷却効果を高めました。特に、材料内のマグノンとフォノンの局所的なハイブリッドモードが熱を蓄え、冷却能力を3倍にすることを発見しました。この発見により、より優れた固体冷却材料の開発が期待されます。

<関連情報>

マグノンとフォノンのハイブリッド局在が強磁性ガラス状態近傍の機能を強化する Hybrid magnon-phonon localization enhances function near ferroic glassy states

MICHAEL E. MANLEY, PAUL J. STONAHA, NICKOLAUS M. BRUNO, IBRAHIM KARAMAN, […], AND JEFFREY W. LYNN
Science Advances  Published:14 Jun 2024
DOI:https://doi.org/10.1126/sciadv.adn2840

Abstract

Ferroic materials on the verge of forming ferroic glasses exhibit heightened functionality that is often attributed to competing long- and short-range correlations. However, the physics underlying these enhancements is not well understood. The Ni45Co5Mn36.6In13.4 Heusler alloy is on the edge of forming both spin and strain glasses and exhibits magnetic field–induced shape memory and large magnetocaloric effects, making it a candidate for multicaloric cooling applications. We show using neutron scattering that localized magnon-phonon hybrid modes, which are inherently spread across reciprocal space, act as a bridge between phonons and magnons and result in substantial magnetic field–induced shifts in the phonons, triple the caloric response, and alter phase stability. We attribute these modes to the localization of phonons and magnons by antiphase boundaries coupled to magnetic domains. Because the interplay between short- and long-range correlations is common near ferroic glassy states, our work provides general insights on how glassiness enhances function.

ad
1700応用理学一般
ad
ad


Follow
ad
タイトルとURLをコピーしました