Advanced Materials

空力特性を調整可能な新型繊維(The Need for Speed) 0106流体工学

空力特性を調整可能な新型繊維(The Need for Speed)

2025-10-27 ハーバード大学Web要約 の発言:ハーバード大学工学・応用科学部(SEAS)の研究チームは、空気抵抗を最大20%削減できるスマートテキスタイルを開発した。この新素材は、ゴルフボール表面のように伸縮によって微細なディンプ...
イオンゲルとグラフェンで、機械学習の計算を劇的に省力化できるAIデバイスを実現~エッジAI向け省エネ技術として期待~ 0403電子応用

イオンゲルとグラフェンで、機械学習の計算を劇的に省力化できるAIデバイスを実現~エッジAI向け省エネ技術として期待~

2025-10-14 物質・材料研究機構,東京理科大学,神戸大学,科学技術振興機構Web要約 の発言:物質・材料研究機構(NIMS)は、イオンゲルとグラフェンを組み合わせた新型AIデバイスを開発し、機械学習の計算を大幅に省力化できることを実...
2万回の屈曲に耐えるフレキシブル固体電池を開発(Chinese Scientists Develop Solid-state Battery That Withstands 20,000 Bends) 0402電気応用

2万回の屈曲に耐えるフレキシブル固体電池を開発(Chinese Scientists Develop Solid-state Battery That Withstands 20,000 Bends)

2025-10-10 中国科学院(CAS)中国科学院金属研究所の研究チームは、2万回の曲げにも耐える柔軟な全固体リチウム電池を開発した。固体電解質と電極界面の抵抗を低減するため、エトキシ基によるイオン伝導性と短鎖硫黄による電気化学活性を兼ね...
3Dプリント可能な超高強度アルミ合金を開発(Printable aluminum alloy sets strength records, may enable lighter aircraft parts) 0703金属材料

3Dプリント可能な超高強度アルミ合金を開発(Printable aluminum alloy sets strength records, may enable lighter aircraft parts)

2025-10-07 マサチューセッツ工科大学(MIT)Web要約 の発言:MITの研究チームは、機械学習と3Dプリント技術を組み合わせて、従来のアルミ合金より5倍強い新素材を開発した。AIで100万通り以上の組成候補を40種類まで絞り込み...
新たな3Dプリント技術で超強靭材料を生成(New 3D printing method ‘grows’ ultra-strong materials) 0505化学装置及び設備

新たな3Dプリント技術で超強靭材料を生成(New 3D printing method ‘grows’ ultra-strong materials)

2025-10-08 スイス連邦工科大学ローザンヌ校(EPFL)大型鉄ジャイロイド(1.3 x 1.0 cm)ALCHEMY EPFL CC BY SAEPFLの研究チームは、水系ハイドロゲル内で金属やセラミックを「成長」させる新しい3Dプ...
中性子で界面構造を解明 ~“はがせるのに強い”エコで便利な賢い接着剤~ 0504高分子製品

中性子で界面構造を解明 ~“はがせるのに強い”エコで便利な賢い接着剤~

2025-10-06 大阪大学大阪大学理学研究科の研究チームは、ホスト–ゲスト錯体を利用した新しい高分子接着剤を開発した。中性子反射率法で界面構造を可視化した結果、分子拡散を抑えながら強固な接着を維持する仕組みを世界で初めて解明。外部刺激に...
強磁性材料における面内異常ホール効果の発見~軌道磁化とスピン磁化の非対角結合を実証~ 0703金属材料

強磁性材料における面内異常ホール効果の発見~軌道磁化とスピン磁化の非対角結合を実証~

2025-09-17 東京科学大学東京科学大学・東京大学・理研の共同研究チームは、面内方向に磁化を持つ強磁性材料で異常ホール効果を初めて観測した。通常ホール効果は電流に垂直な磁場やスピン磁化で説明されるが、本研究ではSrRuO₃極薄膜を用い...
発光技術と医療をつなぐ次世代有機材料を開発~生体に優しい近赤外レーザーで光る新素材が、有機ELと医療応用の架け橋に~ 1700応用理学一般

発光技術と医療をつなぐ次世代有機材料を開発~生体に優しい近赤外レーザーで光る新素材が、有機ELと医療応用の架け橋に~

2025-07-30 九州大学九州大学の安達千波矢教授らは、熱活性化遅延蛍光(TADF)と2光子吸収(2PA)という通常は両立が難しい光機能を、単一の有機分子で両立させることに成功しました。この分子は近赤外レーザー光で励起されて可視光を発し...
折り紙工学:4つの折り目で多方向移動を実現(Origami engineering: how four folds unlock multi-directional locomotion) 0109ロボット

折り紙工学:4つの折り目で多方向移動を実現(Origami engineering: how four folds unlock multi-directional locomotion)

2025-06-12 オランダ・デルフト工科大学(TUDelft)TUデルフトとハーバード大学の研究チームは、4つの折り目を持つ単純なオリガミ構造(degree-4 vertex)を用い、単一アクチュエータで多方向移動が可能なロボットを開発...
ad
タイトルとURLをコピーしました