低消費電力メモリ

記憶チップのエネルギー消費を大幅削減する材料の発見(Material breakthrough for energy-saving memory chips) 0403電子応用

記憶チップのエネルギー消費を大幅削減する材料の発見(Material breakthrough for energy-saving memory chips)

2025-09-26 チャルマース工科大学チャルマース工科大学の研究チームは、世界で初めて強磁性と反強磁性という二つの磁性を同時に持つ原子層材料を開発し、メモリチップの消費電力を10分の1に削減できる可能性を示しました。新素材はコバルト、鉄...
“エントロピー効果”により新規強誘電体窒化物を発見~低消費電力メモリや圧電センサ等への応用に期待~ 0402電気応用

“エントロピー効果”により新規強誘電体窒化物を発見~低消費電力メモリや圧電センサ等への応用に期待~

2025-06-23 東京科学大学理化学研究所と東京科学大学の研究チームは、AlNとGaNの合金にスカンジウム(Sc)を取り込むことで、新規な強誘電体窒化物膜を開発しました。エントロピー効果により従来より多くのScを結晶に取り込み、低電圧・...
酸素原子のわずかな「ズレ」で磁石を反転~強磁性ワイル酸化物「単層」における高効率磁化反転で低消費電力磁気メモリへ道を拓く~ 0403電子応用

酸素原子のわずかな「ズレ」で磁石を反転~強磁性ワイル酸化物「単層」における高効率磁化反転で低消費電力磁気メモリへ道を拓く~

2025-05-14 東京大学東京大学大学院工学系研究科とNTT、日本原子力研究開発機構、北海道大学、熊本大学の共同研究チームは、強磁性ワイル酸化物「SrRuO₃(SRO)」の単層薄膜において、電流のみで磁化の向きを反転させることに成功しま...
ナノスケールの手法が高度なメモリー・ストレージの材料を強化(Nanoscale method boosts materials for advanced memory storage) 0400電気電子一般

ナノスケールの手法が高度なメモリー・ストレージの材料を強化(Nanoscale method boosts materials for advanced memory storage)

2024-10-07 オークリッジ国立研究所(ORNL)オークリッジ国立研究所(ORNL)の研究チームは、電気スタイラスを使ってナノスケールで強誘電体材料の振る舞いを精密にパターン化し、制御する新技術を開発しました。これにより、低消費電力の...
ad
タイトルとURLをコピーしました