脳に着想を得たAI:人間のように見るコンピュータを実現(Brain-Inspired AI Breakthrough: Making Computers See More Like Humans)

ad

2025-04-22 韓国基礎科学研究院(IBS)

韓国の基礎科学研究院(IBS)、延世大学、マックスプランク研究所の共同研究チームは、人間の脳の視覚処理を模倣した新しいAI手法「Lp-Convolution」を開発し、ICLR 2025で発表した。従来のCNNの正方形カーネルに代わり、多変量p一般化正規分布(MPND)に基づく可変形状のフィルターを導入。タスクに応じてフィルター形状を柔軟に調整し、精度と効率を向上させながら計算負荷を低減。CIFAR-100やTinyImageNetでの高精度・高頑健性が確認され、内部処理が生体脳に近似することもマウス脳との比較で実証された。応用先は自動運転、医療画像診断、ロボティクスなど。

脳に着想を得たAI:人間のように見るコンピュータを実現(Brain-Inspired AI Breakthrough: Making Computers See More Like Humans)

Figure 1. Information Processing Structures of the Brain’s Visual Cortex and Artificial Neural Networks

<関連情報>

脳からヒントを得たLp-Convolutionは大きなカーネルに有効であり、視覚野によりよく適合する Brain-inspired Lp-Convolution benefits large kernels and aligns better with visual cortex

Jea Kwon, Sungjun Lim, Kyungwoo Song, C. Justin Lee
ICLR 2025  Published: 23 Jan 2025

Abstract

Convolutional Neural Networks (CNNs) have profoundly influenced the field of computer vision, drawing significant inspiration from the visual processing mechanisms inherent in the brain. Despite sharing fundamental structural and representational similarities with the biological visual system, differences in local connectivity patterns within CNNs open up an interesting area to explore. In this work, we explore whether integrating biologically observed receptive fields (RFs) can enhance model performance and foster alignment with brain representations. We introduce a novel methodology, termed Lp-convolution, which employs the multivariate Lp-generalized normal distribution as an adaptable Lp-masks, to reconcile disparities between artificial and biological RFs. Lp-masks finds the optimal RFs through task-dependent adaptation of conformation such as distortion, scale, and rotation. This allows Lp-convolution to excel in tasks that require flexible RF shapes, including not only square-shaped regular RFs but also horizontal and vertical ones. Furthermore, we demonstrate that Lp-convolution with biological RFs significantly enhances the performance of large kernel CNNs possibly by introducing structured sparsity inspired by Lp-generalized normal distribution in convolution. Lastly, we present that neural representations of CNNs align more closely with the visual cortex when -convolution is close to biological RFs.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました