単原子触媒設計のための前線分子軌道理論を提案(USTC Proposes Frontier Molecular Orbital Theory for Single-atom Catalyst Design)

ad

2025-04-03 中国科学院(CAS)

中国科学技術大学(USTC)の呂軍令教授らの研究チームは、単原子触媒(SAC)の設計に「フロンティア軌道理論(FMO理論)」を初めて適用し、ヘテロ触媒反応における高活性・高安定なPd1触媒の設計に成功しました。ZnOやCoOxナノ粒子を支持体としたPd1触媒は、従来型触媒の20倍の活性と高い選択性を示し、ZnOナノ粒子(1.9nm)を使った触媒は80℃で25.6 min⁻¹のTOFを達成。FMO理論を用いた解析により、LUMOレベルと軌道混成が活性と安定性の鍵であることが実証され、今後のAI駆動による触媒設計に道を拓く成果となりました。

<関連情報>

単原子触媒反応における金属-支持フロンティア軌道相互作用 Metal–support frontier orbital interactions in single-atom catalysis

Xianxian Shi,Zhilin Wen,Qingqing Gu,Long Jiao,Hai-Long Jiang,Haifeng Lv,Hengwei Wang,Jiani Ding,Mason P. Lyons,Alvin Chang,Zhenxing Feng,Si Chen,Yue Lin,Xiaoyan Xu,Pengfei Du,Wenlong Xu,Mei Sun,Yin Li,Bing Yang,Tao Zhang,Xiaojun Wu & Junling Lu
Nature  Published:02 April 2025
DOI:https://doi.org/10.1038/s41586-025-08747-z

単原子触媒設計のための前線分子軌道理論を提案(USTC Proposes Frontier Molecular Orbital Theory for Single-atom Catalyst Design)

Abstract

Single-atom catalysts (SACs) with maximized metal use and discrete energy levels hold promise for broad applications in heterogeneous catalysis, energy conversion, environmental science and biomedicine1,2,3,4,5,6,7. The activity and stability of SACs are governed by the pair of metal–adsorbate and metal–support interactions8,9,10. However, the understanding of these interactions with their catalytic performance in nature is challenging. Correlations of activity with the charge state of metal atoms have frequently reached controversial conclusions11,12,13,14,15. Here we report that the activity of palladium (Pd1) SACs exhibits a linear scaling relationship with the positions of the lowest unoccupied molecular orbital (LUMO) of oxide supports across 14 types of semiconductor. Elevation of the LUMO position by reducing the support particle size to a few nanometres boosts a record high activity along with excellent stability in the semi-hydrogenation of acetylene. We show that the elevated LUMO of support reduces its energy gap with the highest occupied molecular orbital (HOMO) of Pd1 atoms, which promotes Pd1–support orbital hybridizations for high stability and further amends the LUMO of anchored Pd1 atoms to enhance Pd1–adsorbate interactions for high activity. These findings are consistent with the frontier molecular orbital theory and provide a general descriptor for the rational selection of metal–support pairs with predictable activity.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました