波浪予測ロボットがグリーンエネルギー・コストを削減する可能性(Wave-predicting robots could cut green energy costs)

ad

2024-11-14 エディンバラ大学

エジンバラ大学の研究によると、波を予測する無人ロボットを活用することで、再生可能エネルギーのコスト削減が可能になるとされています。新しい技術により、波の乱れを予測してリアルタイムで対処できるため、風力発電や潮力タービンの保守作業が効率化され、従来の船舶や人員が必要な危険な作業が減少します。このシステムは海面近くや深い水中での運用にも対応可能で、エネルギー産業の自動化を加速する可能性があります。

<関連情報>

波浪外乱を考慮した非線形モデル予測による遠隔操作水中探査機の動的位置決め Nonlinear model predictive dynamic positioning of a remotely operated vehicle with wave disturbance preview

Kyle L. Walker, Laura-Beth Jordan, and Francesco Giorgio-Serchi
The International Journal of Robotics Research  Published:October 11, 2024
DOI:https://doi.org/10.1177/02783649241286909

波浪予測ロボットがグリーンエネルギー・コストを削減する可能性(Wave-predicting robots could cut green energy costs)

Abstract

Exploiting preview information of disturbances within robot control is an effective method of handling state perturbations. For underwater vehicles operating in wave-dominated environments, disturbances significantly influence vehicle response and pose a threat to operational safety. In consideration of this, a complete end-to-end control architecture is developed in this work for disturbance rejection during station keeping tasks under wave perturbations, encompassing a nonlinear model predictive controller (NMPC) combined with a deterministic sea wave predictor (DSWP). The wave predictor exploits a continuous measurement of the wave elevation at a location upstream of the vehicle to form a forecast of the temporal evolution of the wave elevation at the vehicle location. The predicted wave parameters are then used to estimate the impending wave-induced hydrodynamic loading, enabling explicit consideration of accurate short-term disturbance forecasts within the controller, ensuring this preview is incorporated in the optimised control sequence. Experimental testing confirms the validity of the wave predictor, producing RMSE as low as 0.017 m. The proposed strategy is then simulated under various wave conditions, optimising control actions inclusive of the preview information. The NMPC outperforms a similar disturbance mitigating feed-forward controller, with average improvements of up to 52% and is found to perform best even with noisy, lower accuracy wave predictions, as well as with communication time delays, providing a high degree of robustness. This demonstrates the potential of the proposed control framework to effectively tackle disturbance mitigation of underwater vehicles subject to large magnitude wave disturbances, expanding the operational envelop of autonomous systems towards forbidding ocean environments.

0200船舶・海洋一般
ad
ad
Follow
ad
タイトルとURLをコピーしました