GaN HEMTの放熱効率を高めるダイヤモンド膜の形成に成功

ad

発熱量を40 %低減し、レーダーシステムの小型化が可能に

2019-12-05 富士通株式会社,株式会社富士通研究所

富士通株式会社(以下、富士通)と株式会社富士通研究所(注1)(以下、富士通研究所)は、気象レーダーなどのパワーアンプ(増幅器)に使用されている窒化ガリウム(GaN)(注2)高電子移動度トランジスタ(HEMT)(注3)(以下、GaN HEMT)の表面に、世界で初めて放熱性の高いダイヤモンド膜を形成する技術を開発しました。

レーダーシステムに用いるトランジスタは、長距離対応にともなう高出力化のため発熱量が増大します。その発熱により性能が劣化するため、冷却装置が必要となりますが、高価かつ空調設備も含めた全体システムが大型になり設置場所が制限されるため、冷却装置の簡素化・小型化が課題となっています。富士通は、GaN HEMTの基板と単結晶ダイヤモンドを常温で接合する技術(注4)を用いてGaN HEMTの裏面側から効率的に放熱させることに成功していますが、より高い放熱効果を得るためには、表面側にも放熱に優れたダイヤモンド膜を形成する技術が必要となります。しかし、一般的なダイヤモンド膜の形成温度は900℃程度と非常に高温であるため、GaN HEMTを破壊してしまうという問題がありました。

今回、GaN HEMTが破壊されない低温(約650℃)において、GaN HEMTの表面に放熱性の高いダイヤモンド膜を形成する技術を開発し、動作時の発熱量を40%低減することに成功しました。これにより冷却装置の簡素化を実現し、GaN HEMTを利用したレーダーシステムの小型化が可能となります。

なお、本研究の一部は、防衛装備庁が実施する安全保障技術研究推進制度の支援を受けて実施されました。

本技術の詳細は、12月1日(日曜日)から12月6日(金曜日)まで米国のボストンで開催されている材料科学に関する国際会議「2019 MRS FALL MEETING & EXHIBIT」にて発表します。

開発の背景

近年、GaN HEMTは、高周波増幅器のトランジスタとして、気象レーダーや無線通信などに広く利用されています。今後、局所的な集中豪雨の高精度な観測や、安定したミリ波大容量通信環境を実現するためには、レーダーおよび基地局の設置数を増やす必要があります。一方、GaN HEMTの高出力動作時は、内部温度の上昇により性能が劣化するため、冷却装置の設置によるシステムの大型化が設置数の増加を阻む要因の一つとなっていました。

課題

冷却装置を小型化・簡素化するためには、GaN HEMTの裏面だけでなく、表面も放熱性に優れたダイヤモンド膜で覆うことで放熱効率を向上させ、GaN HEMTの内部温度を下げることが考えられます。この時、ダイヤモンドの内部に熱がこもらないよう、効率よく熱を通すためには大きな粒径のダイヤモンド結晶が必要となります。このようなダイヤモンド膜を形成するには、通常900℃程度の高温が必要なため、ダイヤモンド形成時に下部のGaN HEMTを破壊してしまうという問題がありました。また、GaN HEMTが破壊されない低温(~650℃)でダイヤモンド膜を形成すると、ダイヤモンドの原料となるメタンガスへ与える熱のエネルギーが小さくなり、ダイヤモンドが形成されなかったり、数百ナノメートル以下の小さいダイヤモンド粒子(ナノダイヤモンド)だけが形成され、さらには各粒子がバラバラの方向を向いた結晶の集合体となり、粒子間での効率的な熱の伝達が阻害されたりする問題がありました(図1)。

開発した技術

今回、トランジスタが破壊されない低温(約650℃)において、放熱性の高いダイヤモンド膜を形成する技術を開発し、表面に高放熱ダイヤモンド膜を適用したGaN HEMTの動作実証に世界で初めて成功しました。

GaN HEMT上に高放熱ダイヤモンド膜を形成するには、まず、GaN HEMTの表面全体に直径数ナノメートル程度の極めて微小なナノダイヤモンド粒子を配置します。その後、このナノダイヤモンド粒子を高い熱エネルギーを持ったメタンガスにさらすことによって、メタンガス中に含まれる炭素をダイヤモンドに変化させ、配置した粒子に取り込ませることができます。炭素は高いエネルギーを持つと、ある特定の方向を向いたダイヤモンドに選択的に取り込まれるという性質を持つため、同じ方向を向いたダイヤモンドが結合し大きくなることができます。一方、メタンガスへ与える熱エネルギーが小さい場合、メタンガス中に含まれる炭素は配置したナノダイヤモンド粒子に取り込まれるために必要なエネルギーが得られません。そのため、バラバラの方向を向いた小さな粒子の集合体となります。

富士通は、このダイヤモンド形成時の圧力やダイヤモンドの原料となるメタンガスの濃度によってメタンガスが受け取る熱エネルギーが変化することに着目し、低温条件でありながら特定の方向を向いたナノダイヤモンド粒子を選択的に大きくできることを見出しました。これにより、ナノダイヤモンドを1000倍大きなマイクロメートルサイズのダイヤモンドへと変化させることが可能となります(図2)。その結果、熱がダイヤモンドの中を通りやすくなり、GaN HEMTの放熱を効率よく行うことができます。

図1 開発したダイヤモンド膜と従来技術との比較

図1 開発したダイヤモンド膜と従来技術との比較

図2 ダイヤモンド形成前後のトランジスタ上面図

図2 ダイヤモンド形成前後のトランジスタ上面図

効果

今回開発した技術を用いることで、GaN HEMT動作時の発熱量をダイヤモンド膜なしの場合と比較して約40%低減し、温度を100℃以上低下させることが可能となります。さらに、富士通にて開発済みの単結晶ダイヤモンドと炭化シリコンを常温で接合する技術を用いた裏面からの放熱と組み合わせることで、GaN HEMTの表裏両面をダイヤモンド膜で覆うことが可能となり、発熱量を約77%減と大幅に低減できる見込みです(図3)。

これにより、これまで大型の冷却装置が必要だった高性能なレーダーシステムに小型の冷却装置が適用できるため、設置場所の省スペース化と設置数の増加を促進できます。その結果として、高精度な気象予測が可能となり、例えば、ゲリラ豪雨に発展する積乱雲を早期に発見するなど、防災面で安心・安全な社会を実現できます。

図3 ダイヤモンド放熱方法と放熱特性の比較

図3 ダイヤモンド放熱方法と放熱特性の比較

今後

今後、気象レーダーシステムや次世代無線通信システムなどへの適用に向けて、高放熱GaN HEMT増幅器の2022年度の実用化を目指します。

商標について

記載されている製品名などの固有名詞は、各社の商標または登録商標です。

以上

注釈

注1 株式会社富士通研究所:
本社 神奈川県川崎市、代表取締役社長 原 裕貴。
注2 窒化ガリウム(GaN):
ワイドバンドギャップ半導体で、シリコン(Si)やガリウムひ素(GaAs)など従来の半導体材料に比べ、電圧による破壊に強いという特長がある。
注3 高電子移動度トランジスタ:
バンドギャップの異なる半導体の接合部にある電子が、通常の半導体内に比べて高速で移動することを利用した電界効果型トランジスタ。1980年に富士通株式会社が世界に先駆けて開発し、現在、衛星放送用受信機や携帯電話機、GPSを利用したナビゲーションシステム、広帯域無線アクセスシステムなど、IT社会を支える基盤技術として広く使用されている。
注4 単結晶ダイヤモンドとGaN HEMTの基板である炭化シリコンを常温で接合する技術:
世界初、単結晶ダイヤモンドと炭化シリコンを常温で接合する技術を開発(2017年12月7日プレスリリース)

本件に関するお問い合わせ

株式会社富士通研究所

デバイス&マテリアル研究センター

ad

0403電子応用0501セラミックス及び無機化学製品
ad
ad
Follow
ad
タイトルとURLをコピーしました