新たな指標が山岳地帯の土壌浸食と植物多様性の予測を可能に(New Index Helps Scientists Predict Soil Erosion and Plant Diversity in Mountains)

2025-08-19 中国科学院(CAS)

中国科学院応用生態研究所の研究チームは、山岳地形の複雑さを定量化する新しい「地形複雑性指数(TCI)」を開発しました。TCIはフラクタル次元、エントロピー、粗さ、体積充填比、傾斜の5要素を統合し、デジタル標高モデル(DEM)を基に算出されます。解析の結果、高解像度DEMでは140m、低解像度DEMでは7.56kmが最適な評価単位であることが分かりました。さらに、30m解像度のDEMを用いた検証では、従来の単一指標では土壌侵食量や植物多様性の変動を7〜24%しか説明できなかったのに対し、TCIは2〜10ポイント高い予測力を示しました。これにより、山岳地帯における土壌侵食のリスク評価や植物多様性の把握に有効であることが明らかとなり、生態系保全や持続的利用に資する新しいツールとして期待されます。

新たな指標が山岳地帯の土壌浸食と植物多様性の予測を可能に(New Index Helps Scientists Predict Soil Erosion and Plant Diversity in Mountains)
The spatial distribution of local correlations between the Terrain Complexity Index and different ecological variables, including (a) annual soil water erosion, (b) vascular plant phylogenetic richness, and (c) vascular plant species richness (Image by TENG Dexiong)

<関連情報>

地形複雑度指数:デジタル標高モデルに基づく山岳地域の多尺度三次元地形構造を推定するための新たな指標 Terrain complexity index: a novel metric for estimating multiscale three-dimensional terrain structure of montane areas based on digital elevation model

Dexiong Teng, Jiaojun Zhu, Jin Chen, Tian Gao, Fengyuan Yu, Yirong Sun, Lizhong Yu, Yuan Zhu, Jinxin Zhang, Xinhua Zhou
Science of Remote Sensing  Available online: 4 August 2025
DOI:https://doi.org/10.1016/j.srs.2025.100265

Highlights

  • Terrain complexity index integrates multiple terrain features.
  • Terrain features stabilize with increasing size, defining practical terrain structure thresholds.
  • Minimum terrain size scales power-law with DEM resolution.
  • Terrain complexity index outperforms single metrics in ecological predictions.

Abstract

Terrain complexity for describing the heterogenicity of terrains plays a key role in many disciplines, including geographic information science, atmospheric boundary layer meteorology, and ecology. However, due to the intrinsic relationships between terrain structure and the size or scale of the terrains, quantifying the terrain complexity faces the challenges in adequately capturing the intricate three-dimensional and multiscale features. Here, we developed a novel terrain complexity index (TCI) based on digital elevation models (DEMs), integrating fractal dimension (Df), entropy of terrain elements (H), rugosity (R), volume filling ratio (V), and slope (α) as . The results showed a substantial variability in Df, H, R, and V with elevations and terrain unit sizes, which was related to feature specific and scale dependent. The terrain features (Df, H, R, and V) increased with the terrain unit size and tended to approach a constant value as the terrain unit size grew larger. It was found that the minimum terrain unit size for these terrain features increased with decreasing DEM resolutions (from 0.5 m to 120 m, ten levels), being well expressed as a power function of the DEM resolution (R2 ≥ 0.97). The minimum terrain unit size was uniquely determined using the change point detection. For example, the minimum terrain unit sizes were 140 m × 140 m and 7.56 km × 7.56 km at 0.5 m and 120 m DEM resolutions, respectively. These terrain features, based on the 30 m resolution DEM, explained 7–21 % of the variance in annual soil water erosion (ASWE) and 9–24 % of vascular plant diversity. The TCI exhibited superior predictive capabilities, outperforming individual terrain features by 2–10 % for both ASWE and vascular plant diversity. Our TCI emerges as an effective metric for quantifying the intricate three-dimensional structures of mountainous terrains, providing new insights into its influence on mountainous ecosystem structure and function.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました