Nd:YAGレーザーの性能を向上させる傾斜ドーピング(Harnessing Gradient Doping Boosts End-pumped Nd:YAG Laser Performance)

ad

2025-05-13 中国科学院(CAS)

Nd:YAGレーザーの性能を向上させる傾斜ドーピング(Harnessing Gradient Doping Boosts End-pumped Nd:YAG Laser Performance)
Temperature, stress, and strain distributions in the axial cross section of gradient-doped crystals. (a) 0.39 ~ 0.80 at.% crystal; (b) 0.17 ~ 0.38 at.% crystal; (c) 0 at.% + 0.17 ~ 0.38 at.% crystal. (Image by MA Tianyu)

中国科学院合肥物质科学研究院の程廷清教授率いる研究チームは、エンドポンプ型Nd:YAGレーザーの性能向上を目的とし、熱効果を低減する新しい勾配ドープ結晶を開発しました。従来の均一ドープ結晶では、高出力ポンピング時に温度勾配や熱応力が発生し、ビーム品質や変換効率が低下する問題がありました。本研究では、ネオジム濃度を軸方向に徐々に増加させる勾配ドープ結晶を設計し、数値モデルを構築しました。実験の結果、ポンプエネルギーの吸収分布が均一化され、熱レンズ効果が低減し、変換効率が50%以上に向上しました。さらに、平凸共振器設計とポンプスポットサイズの最適化により、平均出力が二桁ワット台、ピーク出力がメガワット級に達する高輝度レーザーを実現しました。この成果は、産業、医療、科学分野における次世代高輝度レーザー源の設計に新たな道を開くものです。

<関連情報>

勾配ドーパント濃度を最適化し熱効果を改善した高性能電気光学Qスイッチ2kHzネオジム:YAGレーザー High-performance electro-optically Q-switched 2-kHz Nd:YAG laser with optimized gradient dopant concentration and thermal effects improvement

Shengjie Ma, Zhengdong Xiong, Li Wang, Renqin Dou, Qingli Zhang, Meng’en Wei, Tingqing Cheng, Haihe Jiang
Optics & Laser Technology  Available online: 19 April 2025
DOI:https://doi.org/10.1016/j.optlastec.2025.112997

Abstract

The thermal effects of the gain medium impose significant constraints on achieving high-power high-beam-quality lasers. Gradient-doped crystals can effectively mitigate thermal effects. We use self-grown gradient-doped crystals, and adopt a combination of multiple strategies including diffusion-bonded end caps, pump beam size optimization, and thermal effects compensation, to mitigate the thermal effects of the crystals under the high-power operation. A high-brightness, high-conversion-efficiency, and high-stability laser output is achieved, with an average power up to 12 W at a repetition rate of 2 kHz using a bonded gradient-doped (0 at.% + 0.17–0.38 at.%) Nd:YAG crystal, which corresponds to a peak power of 882 kW. The beam quality is M2x=1.240 and M2y=1.251, and the power instability is 0.31 % (RMS). To the best of our knowledge, this is the highest peak power achieved under near-diffraction-limited conditions for an end-pumped single-rod Nd:YAG laser, with a brightness reaching 5.02 × 1013 W/(cm2·Sr).

 

エンドポンプグラジエントドープNd:YAG結晶の熱効果とその抑制 Thermal effects and their suppression of end-pumped gradient-doped Nd:YAG crystals

Shengjie Ma, Zhengdong Xiong, Ziran Liu, Li Wang, Renqin Dou, Qingli Zhang, Meng’en Wei, Tingqing Cheng, Haihe Jiang
Infrared Physics & Technology  Available online: 3 April 2025
DOI:https://doi.org/10.1016/j.infrared.2025.105845

Highlights

  • Gradient-doped crystals co-optimize thermal effects and conversion efficiency.
  • Gradient-doped crystals exhibit superior laser performance.
  • Numerical simulation guides novel gradient-doped crystal optimization and growth.

Abstract

In this study, a gradient-doped crystal with low thermal effects and low dopant concentration is designed. A numerical analysis model for gradient-doped crystals is established to analyze the impact of dopant concentration on their temperature field and stress–strain field, providing a theoretical basis for optimizing the concentration distribution and growth of novel gradient-doped crystals. The laser characteristics of the optimized gradient-doped (0 at.% + 0.17–0.38 at.%) Nd:YAG crystal are verified through both theoretical analysis and experiments. It is demonstrated that this design not only further smooth and homogenize the longitudinal pump absorption distribution, effectively mitigating thermal effects under high-power operation, but also significantly enhance the output performance. When the continuous pump power of the 808 nm laser diode was increased up to 110 W, a favorable output power growth trend was maintained, achieving a maximum output power of 49.7 W. The maximum optical-to-optical conversion efficiency reached 51.9 %, with a maximum slope efficiency of 57.4 %. This study provides a guidance for further optimization of the concentration distribution of gradient-doped crystals and end-pumped laser technology.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました