理化学研究所

1701物理及び化学

超巨大ブラックホールの成長メカニズムと銀河中心の物質循環を解明

2023-11-03 国立天文台 アルマ望遠鏡で観測したコンパス座銀河の中心部。銀河の中心には超巨大ブラックホールが存在する。画像では、状態の異なるガスを、赤色、青色、緑色、ピンク色で示している。中心を取り巻く高密度分子ガス(緑色)の円盤の...
2004放射線利用

AIでX線自由電子レーザー(SACLA)の輝度を大幅増~人による調整では到達できない性能を実現~

2023-10-27 理化学研究所,高輝度光科学研究センター 理化学研究所(理研)放射光科学研究センター 先端光源加速器研究開発グループの田中 均 グループディレクター(研究当時)、基盤光源チームの稲垣 隆宏 チームリーダー、岩井 瑛人 客...
0108交通物流機械及び建設機械

線路設備モニタリング装置のAI(ディープラーニングモデル)導入について

2023-10-27 株式会社日本線路技術,東日本旅客鉄道株式会社,理化学研究所 〇東日本旅客鉄道株式会社(以下「JR 東日本」)は、スマートメンテナンスの実現に向けて線路設備モニタリング装置を活用し、CBM を推進しております。 〇このた...
ad
1700応用理学一般

磁石によるうろこ模様で回る音波を制御 ~人工格子デザインで「左回り」「右回り」の読み出しに成功~

2023-10-26 理化学研究所,日本原子力研究開発機構,東京大学,科学技術振興機構 理化学研究所(理研)創発物性科学研究センター 量子ナノ磁性研究チームのホルヘ・プエブラ 研究員、東京大学物性研究所のリーヤン・リャオ 大学院生、大谷 義...
1700応用理学一般

超伝導になる電子のカタチが見えた! 量子ビームで描く次世代材料の設計図

2023-10-24 日本原子力研究開発機構 電気抵抗がゼロになる超伝導体は、電力の損失を減らしエネルギー問題を解決する材料や量子コンピュータ実現に必要な材料としてなど高い注目を集め、研究が進んでいます。実用化に向けては超伝導になる電子の空...
1700応用理学一般

ナノシートの配列制御によって構造色の重ね合わせに成功 ~構造色のデザインに新たな指針・次世代色材の創成に期待~

2023-10-23 信州大学,科学技術振興機構,理化学研究所 信州大学 学術研究院 繊維学系の佐野 航季 助教(科学技術振興機構 さきがけ研究者)、信州大学 大学院総合理工学研究科 繊維学専攻の小川 大輔 大学院生(修士課程1年)、理化学...
1701物理及び化学

クォーク4個から成る「純粋テトラクォーク」~加速器実験で見えた新粒子をスーパーコンピュータ「富岳」で解明~

2023-10-20 理化学研究所,京都大学,大阪大学 理化学研究所(理研)数理創造プログラムの土井 琢身 専任研究員、初田 哲男 プログラムディレクター、リュー・ヤン 研修生(研究当時)、京都大学 基礎物理学研究所の青木 慎也 教授、大阪...
0402電気応用

室温で作動するH-導電性固体電解質の開発~電気陰性度の低いカチオンの導入が電解質作動を可能に~

2023-10-20 理化学研究所,分子科学研究所,高エネルギー加速器研究機構,ファインセラミックスセンター,J-PARCセンター 理化学研究所(理研)開拓研究本部 小林固体化学研究室の小林 玄器 主任研究員(分子科学研究所 教授(研究当時...
1700応用理学一般

X線回折に潜む非線形性の発見~数フェムト秒で引き起こされる物質の電子状態の急激な変化~

2023-10-18 理化学研究所,高輝度光科学研究センター,大阪大学,名古屋大学 理化学研究所(理研)放射光科学研究センター SACLAビームライン基盤グループ ビームライン開発チームの井上 伊知郎 研究員、矢橋 牧名 グループディレクタ...
0500化学一般

窒素分子からヒドラジン誘導体作製に成功~不飽和カルボニルの付加反応による含窒素有機物の直接合成~

2023-10-18 理化学研究所 理化学研究所(理研)開拓研究本部 侯有機金属化学研究室の侯 召民 主任研究員(環境資源科学研究センター 副センター長)、卓 庆德 特別研究員、周 小茜 基礎科学特別研究員、島 隆則 専任研究員(環境資源科...
1700応用理学一般

国宝油滴天目茶碗の曜変(光彩)の秘密を探る~干渉光ではなく釉薬表面の2次元シワと反射層の回折光~

2023-10-11 理化学研究所 理化学研究所(理研)光量子工学研究センター 先端光学素子開発チームの海老塚 昇 研究員と開拓研究本部 石橋極微デバイス工学研究室の岡本 隆之 専任研究員(研究当時)の研究チームは、国宝油滴天目(ゆてきてん...
1700応用理学一般

結晶の”ズレ”が音速を超えて伝播することを実証~半世紀にわたる未解決問題を超高速X線イメージングで明らかに~

2023-10-06 大阪大学 研究成果のポイント ハイパワーレーザー(High power laser)駆動の衝撃波により、ダイヤモンド結晶中の“原子レベルのズレ”(転位(dislocation))が高速に伝播する様子を、X線自由電子レー...
ad
タイトルとURLをコピーしました